## Math 304 Midterm 2 Sample

Name: $\qquad$

This exam has 9 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 12 |  |
| 2 | 5 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 15 |  |
| 6 | 12 |  |
| 7 | 10 |  |
| 8 | 16 |  |
| 9 | 10 |  |
| Total: | 100 |  |

## Question 1. (12 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) If $A$ is an $m \times n$ matrix, then $A$ and $A^{T}$ have the same rank.
(b) Given two matrices $A$ and $B$, if $B$ is row equivalent to $A$, then $B$ and $A$ have the same row space.
(c) Given two vector spaces, suppose $L: V \rightarrow W$ is a linear transformation. If $S$ is a subspace of $V$, then $L(S)$ is a subspace of $W$.
(d) For a homogeneous system of rank $r$ and with $n$ unknowns, the dimension of the solution space is $n-r$.

Question 2. (5 pts)
Find the angle between $v=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ in $\mathbb{R}^{3}$.

Question 3. (10 pts)
Let $V$ be the subspace of $\mathbb{R}^{3}$ spanned by $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Describe $V^{\perp}$ by finding a basis of $V^{\perp}$.

Question 4. (10 pts)
Given two lines

$$
L_{1}: x=t+1, y=3 t+1, z=2 t-1,
$$

and

$$
L_{2}: x=2 t-2, y=2 t+3, z=t+1
$$

suppose a plane $H$ is parallel to both $L_{1}$ and $L_{2}$. Moreover, $H$ passes through the point $(0,1,0)$. Find an equation of $H$.

Question 5. (15 pts)
Given

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

(a) Find a basis of $\operatorname{Ker}(A)$.
(b) Find a basis of the row space of $A$.
(c) Find a basis of the range of $A$.
(d) Determine the rank of $A$.

Question 6. (12 pts)
Determine whether the following mappings are linear transformations.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T\binom{x_{1}}{x_{2}}=\binom{x_{1}+1}{x_{1}+x_{2}}
$$

(b) $L: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ by

$$
L(p(x))=p^{\prime}(x)+p(x)
$$

Question 7. (10 pts)
Let $M_{2}(\mathbb{R})$ be the space of all $(2 \times 2)$ matrices with real coefficients. The set

$$
S=\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

is a basis of $M_{2}(\mathbb{R})$. Find the coordinates of $A=\left(\begin{array}{ll}5 & 3 \\ 3 & 1\end{array}\right)$ with respect to the basis $S$.

## Question 8. (16 pts)

Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
L\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{2} \\
x_{1}-x_{2}
\end{array}\right)
$$

(a) Find the matrix representation of $L$ with respect to the standard bases of $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$.
(b) Let $u_{1}=\binom{1}{0}$ and $u_{2}=\binom{1}{1}$. Moreover, let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Find the matrix representation of $L$ with respect to the basis $\left\{u_{1}, u_{2}\right\}$ of $\mathbb{R}^{2}$ and the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of $\mathbb{R}^{3}$.

## Question 9. (10 pts)

Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Its matrix representation with respect to the standard basis of $\mathbb{R}^{2}$ is

$$
\left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right) .
$$

(a) Find the transition matrix from the basis $\left\{u_{1}, u_{2}\right\}$ to the standard basis $\left\{e_{1}, e_{2}\right\}$, where

$$
u_{1}=\binom{2}{3}, u_{2}=\binom{1}{2}
$$

(b) Find the matrix representation of $L$ with respect to $\left\{u_{1}, u_{2}\right\}$.

